В помощь студентам БНТУ - курсовые, рефераты, лабораторные !


Вычисление тройного интеграла. Криволинейные системы координат

Лекция 9.Вычисление тройного интеграла. Криволинейные системы координат. Якобиан и его геометрический смысл. Замена переменных в кратных интегралах. Переход к цилиндрическим и сферическим координатам в тройном интеграле.

Процедура вычисления тройного интеграла аналогична соответствующей операции для двойного интеграла. Для ее описания введем понятие правильной трехмерной области:

Определение 9.1. Трехмерная область V, ограниченная замкнутой поверхностью S, называется правильной, если:

  1. любая прямая, параллельная оси Оz и проведенная через внутреннюю точку области, пересекает S в двух точках;
  2. вся область V проектируется на плоскость Оху в правильную двумерную область D;
  3. любая часть области V, отсеченная от нее плоскостью, параллельной какой-либо из координатных плоскостей, обладает свойствами 1) и 2).

Рассмотрим правильную область V, ограниченную снизу и сверху поверхностями  z=χ(x,y)  и  z=ψ(x,y) и проектирующуюся на плоскость Оху в правильную область D, внутри которой х изменяется в пределах от а до b, ограниченную кривыми y=φ1(x) и    y=φ2(x) (рис.1). Зададим в области V непрерывную функцию f(x, y, z). 

 

Определение 9.2. Назовем трехкратным интегралом от функции f(x, y, z) по области V выражение вида:

                                      .                                          (9.1) 

Трехкратный интеграл обладает теми же свойствами, что и двукратный. Перечислим их без доказательства, так как они доказываются аналогично случаю двукратного интеграла.

  1. Если область V разбить на две области V1 и V2 плоскостью, параллельной какой-либо из координатных плоскостей, то трехкратный интеграл по области V равен сумме трехкратных интегралов по областям V1 и V2.
  2. Если т и М – соответственно наименьшее и наибольшее значения функции f(x,y,z) в области V, то верно неравенство                                                                                            .                                     mV ≤ IV ≤ MV,                                                                                  где V – объем данной области, а IV – трехкратный интеграл от функции f(x,y,z) по области V.
  3. Трехкратный интеграл IV от непрерывной функции f(x,y,z) по области V равен произведению его объема V на значение функции в некоторой точке Р области V:                                        (9.2)

 

             Вычисление тройного интеграла.

 

Теорема 9.1. Тройной интеграл от функции f(x,y,z) по правильной области V равен трехкратному интегралу по той же области:

                 .                                 (9.3)

Доказательство.

Разобьем область V плоскостями, параллельными координатным плоскостям, на п правильных областей . Тогда из свойства 1 следует, что

         ,

где - трехкратный интеграл от функции f(x,y,z) по области .

Используя формулу (9.2), предыдущее равенство можно переписать в виде:

           .

Из условия непрерывности функции f(x,y,z) следует, что предел интегральной суммы, стоящей в правой части этого равенства, существует и равен тройному интегралу . Тогда, переходя к пределу при , получим:

                         IV = ,

что и требовалось доказать.

 

Замечание.

Аналогично случаю двойного интеграла можно доказать, что изменение порядка интегрирования не меняет значения трехкратного интеграла.

 

Пример. Вычислим интеграл где V – треугольная пирамида с вершинами в точках (0, 0, 0), (1, 0, 0), (0, 1, 0) и (0, 0, 1). Ее проекцией на плоскость Оху является треугольник с вершинами (0, 0), (1, 0) и (0, 1). Снизу область ограничена плоскостью z = 0, а сверху – плоскостью x + y + z = 1. Перейдем к трехкратному интегралу:

Множители, не зависящие от переменной интегриро-вания, можно вынести за знак соответствующего интеграла:

 

          Криволинейные системы координат в трехмерном пространстве.

  1. Цилиндрическая система координат.

 

Цилиндрические координаты точки Р(ρ,φ,z) – это полярные координаты ρ, φ проекции этой точки на плоскость Оху и аппликата данной точки z (рис.2).

Формулы перехода от цилиндрических координат к декартовым можно задать следующим образом:

                x = ρ cosφ, y = ρ sinφ, z = z.                                                            (9.4)

 

  1. Сферическая система координат.

 

В сферических координатах положение точки в пространстве определяется линейной координатой ρ – расстоянием от точки до начала декартовой системы координат (или полюса сферической системы), φ – полярным углом между положительной полуосью Ох и проекцией точки на плоскость Оху, и θ – углом между положительной полуосью оси Оz и отрезком OP (рис.3). При этом

                                  

Зададим формулы перехода от сферических координат к декартовым:

         x = ρ sinθ cosφ, y = ρ sinθ sinφ, z = ρ cosθ.                                                         (9.5)

 

                              Якобиан и его геометрический смысл.

 

Рассмотрим общий случай замены переменных в двойном интеграле. Пусть в плоскости Оху дана область D, ограниченная линией L. Предположим, что х и у являются однозначными и непрерывно дифференцируемыми функциями новых переменных u и v:

                                 x = φ(u, v), y = ψ(u, v).                                                                 (9.6)

Рассмотрим прямоугольную систему координат Оuv, точка Р΄(u, v) которой соответствует точке Р(х, у) из области D. Все такие точки образуют в плоскости Оuv область D΄, ограниченную линией L΄. Можно сказать, что формулы (9.6) устанавливают взаимно однозначное соответствие между точками областей D и D΄. При этом линиям u = const и

v = const в плоскости Оuv будут соответствовать некоторые линии в плоскости Оху.

 

Рассмотрим в плоскости Оuv прямоугольную площадку ΔS΄, ограниченную прямыми u = const, u+Δu = const, v = const и v+Δv = const. Ей будет соответствовать криволинейная площадка ΔS в плоскости Оху (рис.4). Площади рассматриваемых площадок  тоже будем обозначать ΔS΄ и ΔS. При этом  ΔS΄ = Δu Δv. Найдем площадь ΔS. Обозначим вершины этого криволинейного четырехугольника Р1, Р2, Р3, Р4, где

P1(x1, y1),  x1 = φ(u, v), y1 = ψ(u, v);

P2(x2, y2), x2 = φ(u+Δu, v), y2 = ψ(u+Δu, v);

P3(x3, y3), x3 = φ(u+Δu, v+Δv), y3 = ψ(u+Δu, v+Δv);

P4(x4, y4), x4 = φ(u, v+Δv), y4 = ψ(u, v+Δv).

Заменим малые приращения Δu и Δv соответствующими дифференциалами. Тогда

                          

При этом четырехугольник Р1 Р2 Р3 Р4 можно считать параллелограммом и определить его площадь по формуле из аналитической геометрии:

                                                     (9.7)

Определение 9.3. Определитель называется функциональным определителем или якобианом функций φ(х, у) и ψ(х, у).

Переходя к пределу при в равенстве (9.7), получим геометрический смысл якобиана:

                         ,                                                                                       (9.8)

то есть модуль якобиана есть предел отношения площадей бесконечно малых площадок ΔS и ΔS΄.

Замечание. Аналогичным образом можно определить понятие якобиана и его геометрический смысл для п-мерного пространства: если x1 = φ1(u1, u2,…,un), x2 = φ2(u1, u2,…,un),…, xn = φ(u1, u2,…, un), то

                                                                                              (9.8)

При этом модуль якобиана дает предел отношения «объемов» малых областей пространств х1, х2,…, хп и u1, u2,…, un .

 

                             Замена переменных в кратных интегралах.

 

Исследуем общий случай замены переменных на примере двойного интеграла.

Пусть в области D задана непрерывная функция z = f(x,y), каждому значению которой соответствует то же самое значение функции z = F(u, v) в области D΄, где

                  F(u, v) = f(φ(u, v), ψ(u, v)).                                                                (9.9)

Рассмотрим интегральную сумму

где интегральная сумма справа берется по области D΄. Переходя к пределу при , получим формулу преобразования координат в двойном интеграле:

                                                                      (9.10)

Аналогичным образом можно вывести подобную формулу для тройного интеграла:

             (9.11)

где x = φ(u, v, w), y = ψ(u, v, w), z = χ(u, v, w),

          ,                                                                                  (9.12)

а область V пространства Оxyz отображается в область V΄ пространства Ouvw.

                 

                 Переход к цилиндрическим и сферическим координатам

                                             в тройном интеграле.

 

Найдем, используя формулы (9.4), (9.5) и (9.12), якобианы перехода от декартовых координат к цилиндрическим и сферическим:

  1. для цилиндрических координат

                                                                           (9.13)

  1. для сферических координат

                               (9.14)

Тогда формулы перехода к цилиндрическим или сферическим координатам в тройном интеграле будут выглядеть так:                                                                       (9.15)

    ,

где смысл обозначений понятен из предыдущего текста.

 

Примеры.

  1. Вычислим интеграл от функции по области, ограниченной поверхностями ­x² + y² = 1, y = 0, y = x, z = 0, z = 1.

  1. Пусть подынтегральная функция u = 1, а область интегрирования – шар радиуса R с центром в начале координат. Тогда

.

 

@reg

@support17

Сейчас 22 гостей онлайн

@(c)

Copyright © 2009-2011 Support17.com
Любое использование материалов, опубликованных на support17,
разрешается только в случае указания гиперссылки на Support17.com

@s

Родоначальницей всех приборостроительных специальностей явилась кафедра «Приборы точной механики», которая была открыта в 1961 г. на машиностроительном факультете.
В 1976 г. был организован оптико-механический факультет.