В помощь студентам БНТУ - курсовые, рефераты, лабораторные !


NAND и NOR

NAND и NOR

Cокращения NOR и NAND обозначают тип логических элементов, используемых в данной единице флэш-памяти. NOR обозначает логический элемент ИЛИ-НЕ (NOT OR), а NAND — И-НЕ (NOT AND). Но, поскольку мне сейчас не хочется читать вам курс булевой алгебры и основ цифровой логики, которая вам, к тому же, и не нужна, остановимся лишь на результатах использования этих технологий.
Основная функция накопителей на флэш — хранить информацию. И отсюда вытекает первое различие: достигнутые сегодня плотности записи для технологии NAND превосходят достигнутые в NOR, причем разница измеряется в порядках. И требования хранения больших объемов и компактности однозначно определяют технологию используемой флэш-памяти. Впрочем, это не единственный критерий. Не менее важной является возможность выполнять в памяти записанный программный код, т.е. так называемая XIP Capability (XIP — eXecute In Place). Такая возможность существует у NOR-технологии и отсутствует у NAND. Так получается, что основным назначением памяти, произведенной по технологии NAND, является хранение данных, а по технологии NOR — хранение исполнимого программного кода и, в меньшей степени, данных (что обусловлено не только доступным малым объемом — чуть позже мы вернемся к этому).

Флэш-устройства делятся на части, которые называются блоками. Это необходимо делать для преодоления некоторых физических ограничений и из ценовых соображений. Запись в любом устройстве флэш определенного блока может быть произведена только если этот блок пуст или очищен. В большинстве случаев получается так, что операции записи должна предшествовать операция стирания. И если в NAND-устройствах операция стирания блока может быть произведена сразу, то в NOR-устройствах необходимо предварительно установить все байты блока в ноль. Нужно также сказать что типичное значение размера блока в NOR-устройствах составляет 64 или 128 Кб (8-32 Кб у NAND), что в сочетании с и так невысокими скоростями работы флэш приводит к тому, что операции записи со стиранием могут занимать до нескольких секунд. Это и является сдерживающим фактором применения NOR-флэша в качестве носителя данных. А применение его для хранения исполнимого кода возможно в том случае, если он устраивает в плане производительности — требования не должны быть высокими. Время стирания памяти NAND измеряется в миллисекундах и имеет первый порядок. А малый размер блока в случае неблагоприятных внешних условий гарантирует потерю минимального объема данных. Итак, подводя итог по этому абзацу: операции чтения NOR несколько быстрее NAND; операции же записи, наоборот, быстрее у NAND, причем значительно; благодаря малому размеру блока NAND в единицу времени нуждается в меньшем числе стираний (что, как мы увидим ниже, еще и способно продлить срок ее функционирования в устройстве), которые она проводит приблизительно на три порядка быстрее, чем NOR.

NOR-флэш является устройством памяти с произвольным доступом. Микросхемы NOR имеют интерфейс, позволяющий произвести адресацию и получить легкий доступ к каждому отдельному байту. Интерфейс ввода-вывода устройства памяти NAND значительно сложнее и меняется от устройства к устройству и от разработчика к разработчику. Одни и те же выводы (зачастую их 8) используются для передачи управляющих сигналов, адреса и данных. Кроме того, в NAND-флэше доступ осуществляют блоками обычно в 512 байт, т.е. за одно обращение считывается или записывается 512 байт. Доступ к каждому блоку произвольный, но, так как нет возможности обратиться к отдельному байту, память типа NAND не является в известном смысле памятью произвольного доступа. Выдача каждого байта из 512-байтного блока осуществляется на шину памяти последовательно, поэтому уместно говорить о последовательном доступе. Что и делают. Или о памяти со страничной организацией. Теперь становится понятней, почему NOR больше подходит для хранения и выполнения программ, а NAND — для хранения данных.
Схемотехнически ячейка памяти NAND организуется проще: она имеет меньший размер по сравнению с NOR, и это соответственно приводит к повышению плотности записи, уменьшению энергопотребления и стоимости производства.

Но у любой технологии не могут быть только положительные стороны. В этом смысле NAND тоже не исключение. Как и при эксплуатации любых накопителей, возможны случайные ошибки чтения и порча накопителя в целом. Для устройств памяти флэш-типа актуально говорить о безошибочном чтении, обработке плохих блоков и числе циклов чтения/записи. Явление ошибочного вычитывания битов (называется bit-flipping) больше характерно для NAND-памяти, чем для NOR. Вред от одного ошибочного бита определяется типом данных, к которым он принадлежит. Так, для мультимедийных данных это окажется несущественным, но подобная ошибка в программном коде или критически важных данных может привести к весьма трагическим результатам. Как я уже сказал, для NOR-памяти это явление менее характерно, а память на технологиях NAND нуждается в использовании какого-то дополнительного механизма обнаружения и коррекции ошибок.

Технологии производства NAND-памяти пока несовершенны, и изначально память содержит какое-то число неработающих элементов. Так как в NAND группа запоминающих ячеек объединяется в блок, то испорченная ячейка в блоке приводит к неработоспособности блока в целом, т.е. получается плохой блок. Поэтому появляется необходимость отслеживать состояние блоков и использовать только рабочие, что осуществить намного проще, чем произвести память, абсолютно не содержащую плохих страниц: такое производство оказывается очень дорогим (похожая ситуация была в свое время с LCD-панелями). По очевидным причинам этот вид дефектов не характерен для NOR.

Рабочий ресурс микросхем флэш выражается в минимально и максимально возможном числе циклов стирания каждого отдельного блока (а мы уже знаем, что каждая запись блока обязательно сопровождается его предварительным стиранием). Для памяти на технологиях NOR оно составляет 10.000 и 100.000 циклов соответственно, для NAND — 100.000 и 1.000.000 циклов. Все предельно просто, и комментировать нечего.
Использование NOR-памяти отличается сравнительной простотой. Она не нуждается в каких-либо дополнительных драйверах, а может быть просто установлена и использована. C NAND сложнее, так как разные производители используют разные интерфейсы, и для нее скорее всего понадобится драйвер. Впрочем, несмотря на то, что у NAND-памяти много преимуществ, вы не должны думать, что NOR — это вчерашний день. NOR-память сегодня находит применение в многочисленных устройствах, не нуждающихся в больших объемах и некритичных к производительности. NAND находит применение в тех областях, где бОльшая сложность по применению оправдывается большИми доступными объемами и производительностью.

По материалам компаний — производителей флэш M-Systems, Samsung и др.

***Общий принцип работы ячейки флэш-памяти.

Рассмотрим простейшую ячейку флэш-памяти на одном n-p-n транзисторе. Ячейки подобного типа чаще всего применялись во flash-памяти с NOR архитектурой, а также в микросхемах EPROM.

Поведение транзистора зависит от количества электронов на "плавающем" затворе. "Плавающий" затвор  хранит запрограммированное значение.

Помещение заряда на "плавающий" затвор в такой ячейке производится методом инжекции "горячих" электронов (CHE - channel hot electrons), а снятие заряда осуществляется методом


Заключение архитектура флэш-памяти.

Существует несколько типов архитектур (организаций соединений между ячейками) флэш-памяти. Наиболее распространёнными в настоящее время являются микросхемы с организацией NOR и NAND.

NOR (NOT OR, ИЛИ-НЕ)

Ячейки работают сходным с EPROM( (Electrically Programmable Read-Only Memory).) способом. Интерфейс параллельный. Произвольное чтение и запись.

Преимущества: быстрый произвольный доступ, возможность побайтной записи.

Недостатки: относительно медленная запись и стирание.

Из перечисленных  типов имеет наибольший размер ячейки, а потому плохо масштабируется. Единственный тип памяти, работающий на двух разных напряжениях.

Идеально подходит для хранения кода программ (PC BIOS, сотовые телефоны), идеальная замена обычному EEPROM.

 

Основные производители: AMD, Intel, Sharp, Micron, Ti, Toshiba, Fujitsu, Mitsubishi, SGS-Thomson, STMicroelectronics, SST, Samsung, Winbond, Macronix, NEC, UMC.

 

Программирование: методом инжекции "горячих" электронов
Стирание: туннеллированием FN

NAND (NOT AND, И-НЕ)

Доступ произвольный, но небольшими блоками (наподобие кластеров жёсткого диска). Последовательный интерфейс. Не так хорошо, как AND память подходит для задач, требующих произвольного доступа.

Преимущества: быстрая запись и стирание, небольшой размер блока.

Недостатки: относительно медленный произвольный доступ, невозможность побайтной записи.

Наиболее подходящий тип памяти для приложений, ориентированных на блочный обмен: MP3 плееров, цифровых камер и в качестве заменителя жёстких дисков.

 

Основные производители: Toshiba, AMD/Fujitsu, Samsung, National

Программирование: туннеллированием FN
Стирание: туннеллированием FN

 

AND (И)

Доступ к ячейкам памяти последовательный, архитектурно напоминает NOR и NAND, комбинирует их лучшие свойства. Небольшой размер блока, возможно быстрое мультиблочное стирание. Подходит для потребностей массового рынка.

 

Основные производители: Hitachi и Mitsubishi Electric.

Программирование: туннеллированием FN
Стирание: туннеллированием FN

 

DiNOR (Divided bit-line NOR, ИЛИ-НЕ с разделёнными разрядными линиями)

Тип памяти, комбинирующий свойства NOR и NAND. Доступ к ячейкам произвольный. Использует особый метод стирания данных, предохраняющий ячейки от пережигания (что способствует большей долговечности памяти). Размер блока в DiNOR всего лишь 256 байт.

Основные производители: Mitsubishi Electric, Hitachi, Motorola.

Программирование: туннеллированием FN
Стирание: туннеллированием FN

Примечания: В настоящее время чаще всего используются память с архитектурой NOR и NAND. Hitachi выпускает многоуровневую AND-память с NAND-итерфейсом (SuperAnd или AG-AND [Assist Gate-AND])

 

Квантомеханическое туннелирования Фаулера-Нордхейма (Fowler-Nordheim [FN]).

Эффект туннелирования - один из эффектов, использующих волновые свойства электрона. Сам эффект заключается в преодолении электроном потенциального барьера малой "толщины".

Различия методов тунеллирования Фаулера-Нордхейма (FN) и метода инжекции "горячих" электронов:

  • Channel FN tunneling - не требует большого напряжения. Ячейки, использующие FN, могут быть меньше ячеек, использующих CHE.
  • CHE injection (CHEI) - требует более высокого напряжения, по сравнению с FN. Таким образом, для работы памяти требуется поддержка двойного питания.
  • Программирование методом CHE осуществляется быстрее, чем методом FN.

Следует заметить, что, кроме FN и CHE, существуют другие методы программирования и стирания ячейки, которые успешно используются на практике, однако два описанных нами применяются чаще всего.

Процедуры стирания и записи сильно изнашивают ячейку флэш-памяти, поэтому в новейших микросхемах некоторых производителей применяются специальные алгоритмы, оптимизирующие процесс стирания-записи, а также алгоритмы, обеспечивающие равномерное использование всех ячеек в процессе функционирования.

 

Spansion - лучший поставщик флэш-памяти NOR


Компания Spansion LLC, дочернее предприятие корпораций Advanced Micro Devices и Fujitsu Limited по производству флэш-памяти, продолжает возглавлять отрасль флэш-памяти NOR. В течение первой половины 2004 г. ее доля на рынке составила почти 27% — на шесть пунктов выше, чем у ближайшего конкурента; об этом говорится в новом отчете фирмы iSuppli, занимающейся исследованиями рынка.
Ключом к доминированию Spansion стало то, что компания смогла предложить самый широкий спектр устройств флэш-памяти и к тому же представила инновационную технологию MirrorBit, которая позволяет резко сократить издержки производства и дает Spansion значительное преимущество в конкурентной борьбе.

Технология MirrorBit сравнительно проста, но весьма эффективна: она предусматривает хранение двух битов данных в одной ячейке флэш-памяти на основе принципиально иных, чем в других решениях, и более рациональных методов. Кроме того, технология MirrorBit по своей природе очень удобна с точки зрения изготовления, что позволило Spansion развернуть производство флэш-памяти NOR с самыми высокими в отрасли уровнями плотности — до 512 Мб.
Технология MirrorBit предоставляет производителям карманных устройств архитектуру флэш-памяти нового поколения, которая необходима им для изготовления недорогих, но функционально насыщенных мобильных продуктов, на которых пользователи могли бы запускать мощные программные приложения, играть в 3D-игры, снимать фотографии и видео со сверхвысоким разрешением, общаться со своими родными, друзьями и коллегами посредством видеосвязи в реальном времени.

 

@reg

@support17

Сейчас 156 гостей онлайн

@(c)

Copyright © 2009-2011 Support17.com
Любое использование материалов, опубликованных на support17,
разрешается только в случае указания гиперссылки на Support17.com

@s

Родоначальницей всех приборостроительных специальностей явилась кафедра «Приборы точной механики», которая была открыта в 1961 г. на машиностроительном факультете.
В 1976 г. был организован оптико-механический факультет.