В помощь студентам БНТУ - курсовые, рефераты, лабораторные !


Биогаз

Биогаз.

В последнее время во всем мире все большее внимание уделяют нетрадиционным с технической точки зрения, возобновляемым источникам энергии (ВИЭ). Для Республики Узбекистан из ВИЭ имеет значение энергия: солнечного излучения, ветра, малых речных потоков, термальных источников, биомассы. Некоторые из них, например, ветер, находили широкое применение и в прошлом, а сегодня переживают второе рождение во многих странах мира, в особенности в странах Европы. Одним из «забытых» видов сырья является и биогаз, использовавшийся еще в Древнем Китае и вновь «открытый» в наше время.

Что же такое биогаз? Этим термином обозначают газообразный продукт, получаемый в результате анаэробной, то есть происходящей без доступа воздуха, ферментации органических веществ самого разного происхождения. В любом крестьянском хозяйстве в течение года собирается значительное количество навоза, ботвы растений, различных отходов. Обычно после разложения их используют как органическое удобрение. Однако мало кто знает, какое количество биогаза и тепла выделяется при ферментации. А ведь эта энергия тоже может сослужить хорошую службу сельским жителям.

Биогаз – смесь газов. Его основные компоненты: метан (СН4) - 55-70% и углекислый газ (СО2) – 28-43%, а также в очень малых количествах другие газы, например – сероводород (Н2S).

 

В среднем 1 кг органического вещества, при 70% биологическом разложении, производит 0,18 кг метана, 0,32 кг углекислого газа, 0,2 кг воды и 0,3 кг неразложимого остатка.

Свежий навоз животноводческих ферм и жидкие составляющие навоза вместе со сточными водами являются загрязнителями окружающей среды. Повышенная восприимчивость сельскохозяйственных культур к свежему навозу приводит к загрязнению грунтовых вод и воздушного бассейна, создает благоприятную среду для заражения почвы вредными микроорганизмами. В навозе животных жизнедеятельность болезнетворных бактерий и яиц гельминтов не прекращается, содержащиеся в нем семена сорных трав сохраняют свои свойства.
Для устранения этих негативных явлений необходима специальная технология обработки навоза, позволяющая повысить концентрацию питательных веществ и одновременно устранить неприятные запахи, подавить патогенные микроорганизмы, снизить содержание канцерогенных веществ. Перспективным, экологически безопасным и экономически выгодным направлением решения этой проблемы является анаэробная переработка навоза и отходов в биогазовых установках с получением биогаза. Благодаря высокому содержанию метана (до 70%) биогаз может гореть. Оставшаяся после такой естественной переработки органическая масса представляет собой качественное обеззараженное удобрение.

Для переработки используются дешевые отходы сельского хозяйства - навоз животных, помет птицы, солома, отходы древесины, сорная растительность, бытовые отходы и органический мусор, отходы жизнедеятельности человека и т.п.

Полученный биогаз, может идти на отопление животноводческих помещений, жилых домов, теплиц, на получение энергии для приготовления пищи, сушку сельскохозяйственных продуктов горячим воздухом, подогрев воды, выработку электроэнергии с помощью газовых генераторов.

После утилизации содержание питательных веществ в полученном удобрении увеличивается на 15% по сравнению с обычным навозом. При этом в новом удобрении уничтожены гельминты и болезнетворные бактерии, семена сорных трав. Такой навоз применяется без традиционных выдержек и хранения. При утилизации получается также жидкий экстракт, который предназначается для полива кормовых трав, овощей и т.п. Сухое удобрение используется по прямому назначению, при этом урожайность люцерны повышается на 50%, кукурузы на 12, овощей на 20-30%.

Из навоза одной коровы можно получить в сутки до 4,2 м3 биогаза. Энергия, заключенная в одном м3 биогаза, эквивалентна энергии 0,6 м3 природного горючего газа, 0,74 л нефти, 0,65 л дизельного топлива, 0,48 л бензина и т.п. При применении биогаза экономятся также мазут, уголь, электроэнергия и другие энергоносители. Внедрение биогазовых установок улучшает экологическую обстановку на животноводческих фермах, птицефабриках и на прилегающих территориях, предотвращаются вредные воздействия на окружающую среду.
По некоторым данным вклад биомассы в мировой энергетический баланс составляет около 12%, хотя значительная доля биомассы, используемой для энергетических нужд, не является коммерческим продуктом и, как результат, не учитывается официальной статистикой. В странах Европейского Союза, в среднем, вклад биомассы в энергетический баланс составляет около 3%, но с широкими вариациями: в Австрии - 12%, в Швеции - 18%, в Финляндии - 23%.

Первичной биомассой являются растения, произрастающие на суше и в воде. Биомасса образуется в результате фотосинтеза, за счет которого солнечная энергия аккумулируется в растущей массе растений. Энергетический кпд собственно фотосинтеза составляет около 5%. В зависимости от рода растений и климатической зоны произрастания это приводит к различной продуктивности в расчете на единицу площади, занятой растениями.

Для энергетических целей первичная биомасса используется в основном как топливо, замещающее традиционное ископаемое топливо. Причем речь, как правило, идет об отходах лесной и деревоперерабатывающей промышленности, а также об отходах полеводства (солома, сено). Теплотворность сухой древесины достаточно высока, составляя в среднем 20 ГДж/т. Несколько ниже теплотворность соломы, например, для пшеничной соломы она составляет около 17,4 ГДж/т.

В то же время большое значение имеет удельный объем топлива, который определяет размеры соответствующего оборудования и технологию сжигания. В этом отношении древесина значительно уступает, например, углю. Для угля удельный объем составляет около 30 дм3 /ГДж, тогда как для щепы, в зависимости от породы дерева, этот показатель лежит в пределах 250 – 350 дм3 /ГДж; для соломы удельный объем еще больше, достигая 1м3 /ГДж. Поэтому сжигание биомассы требует либо ее предварительной подготовки, либо специальных топочных устройств.
В частности, в ряде стран распространение получил способ уплотнения древесных отходов с превращением их в брикеты или, так называемые, плетки. Оба способа позволяют получить топливо с удельным объемом около 50 дм3/ГДж, что вполне приемлемо для обычного слоевого сжигания. Например, в США годовое производство плеток составляет около 0,7 млн. т, а их рыночная цена - около 6 долл./ГДж при теплотворности около 17 ГДж/т.

В виде топлива может использоваться широкий спектр биомассы. Древесина и сухой навоз являются традиционными сельскими видами топлива и продолжают в большом объеме использоваться во многих регионах мира. Основные виды перечислены в таблице вместе с техникой их использования.

Сжигание биомассы является нейтральным процессом с точки зрения выделения углекислого газа. Растения потребляют углекислый газ в цикле фотосинтеза. Затем он выделяется при горении вещества. Следовательно, выращенный лес и энергетические культуры являются энергетическим ресурсом, который не приводит к концентрации углекислого газа в атмосфере.

В Узбекистане большие площади занимают посевы хлопчатника, кенафа, табака, подсолнечника. И если стебли хлопчатника до сих пор частично использовались как сырье для производства спирта, бумаги, то стебли остальных растений, как правило, просто сжигались. А ведь по природному происхождению и химическому составу они близки к древесине! И это при том, что лесных насаждений в стране очень мало. Ученые Узбекистана разработали технологию получения из этих отходов растениеводства экологически чистых строительных материалов, обладающих хорошими теплоизоляционными свойствами и достаточно высоким сопротивлением к разрыву, что немаловажно для этого сейсмически активного региона.

Биомасса

Описание

Использование энергии

Отходы лесоматериалов

Обрезки и опилки от переработки древесины

В основном как топливо для котельных

Сельскохозяйственные отходы

Солома, помет, сахарная багасса и т.п.

a) Как топливо для котельных или для выработки энергии
б) Производство биоэтанола для транспортного топлива, например, использование сахара в Бразилии.

Энергетические сельскохозяйственные культуры

Быстрорастущая биомасса, выращиваемая специально на топливо, например, ива или мискантус

Получение электроэнергии (всего несколько коммерческих примеров)

Твердые городские отходы

Домашние и коммерческие отходы

a) Широкомасштабное сжигание с получением энергии, используемое для выработки электроэнергии
б) Улавливание метана со свалок, используется для выработки электроэнергии и промышленного нагрева.

Сточные воды

Осадки от переработки городских сточных вод

Анаэробное сбраживание осадков сточных вод вырабатывает метан. Используется для выработки электроэнергии.

Биомасса - термин, объединяющий все органические вещества растительного и животного происхождения. Биомасса делится на первичную (растения, животные, микроорганизмы и т.д.) и вторичную - отходы при переработке первичной биомассы и продукты жизнедеятельности человека и животных. В свою очередь отходы также делятся на первичные - отходы при переработке первичной биомассы (солома, ботва, опилки, щепа, спиртовая барда и т.д.) и вторичные - продукты физиологического обмена животных и человека.

 

Технология получения биогаза.

В основе биогазовых технологий лежат сложные природные процессы биологического разложения органических веществ в анаэробных (без доступа воздуха) условиях под воздействием особой группы анаэробных бактерий. Эти процессы сопровождаются минерализацией азотсодержащих, фосфорсодержащих и калийсодержащих органических соединений с получением минеральных форм азота, фосфора и калия, наиболее доступных для растений, с полным уничтожением патогенной (болезнетворной) микрофлоры, яиц гельминтов, семян сорняков, специфических фекальных запахов, нитратов и нитритов. Процесс образования биогаза и удобрений осуществляется специальных биореакторах-метантенках.

Один микробиологический способ обезвреживания навоза, да и любых других органических остатков, известен давно - это компостирование. Отходы складывают в кучи, где они под действием микроорганизмов-аэробов понемногу разлагаются. При этом куча разогревается примерно до 60°С и происходит естественная пастеризация - погибает большинство патогенных микробов и яиц гельминтов, а семена сорняков теряют всхожесть.

Но качество удобрения при этом страдает: пропадает до 40 % содержащегося в нем азота и немало фосфора. Пропадает и энергия, потому что впустую рассеивается тепло, выделяющееся из недр кучи, - а в навозе, между прочим, заключена почти половина всей энергии, поступающей на ферму с кормами. Отходы же от свиноферм для компостирования просто не годятся: слишком они жидкие.
Но возможен и другой путь переработки органического вещества - сбраживание без доступа воздуха, или анаэробная ферментация. Именно такой процесс происходит в природном биологическом реакторе, заключенном в брюхе каждой буренки, пасущейся на лугу. Там, в коровьем преджелудке, обитает целое сообщество микробов. Одни расщепляют клетчатку и другие сложные органические соединения, богатые энергией, и вырабатывают из них низкомолекулярные вещества, которые легко усваивает коровий организм. Эти соединения служат субстратом для других микробов, которые превращают их в газы - углекислоту и метан. Одна корова производит в сутки до 500 литров метана; из общей продукции метана на Земле почти четверть - 100-200 млн. тонн в год! - имеет такое "животное" происхождение.

Метанообразующие бактерии - во многом весьма замечательные создания. У них необычный состав клеточных стенок, совершенно своеобразный обмен веществ, свои, уникальные ферменты и коферменты, не встречающиеся у других живых существ. И биография у них особая - их считают продуктом особой ветви эволюции.

Примерно такое сообщество микроорганизмов и приспособили латвийские микробиологи для решения задачи - переработки отходов свиноферм. По сравнению с аэробным разложением при компостировании анаэробы работают медленнее, но зато гораздо экономнее, без лишних энергетических потерь. Конечный продукт их деятельности - биогаз, в котором 60-70 % метана,- есть не что иное, как концентрат энергии: каждый кубометр его, сгорая, выделяет столько же тепла, сколько килограмм каменного угля, и в два с лишним раза больше, чем килограмм дров.

Во всех прочих отношениях анаэробная ферментация ничуть не хуже компостирования. А самое важное - что таким способом прекрасно перерабатывается навоз с ферм. В процессе биологической, термофильной, метангенерирующей обработки органических отходов образуются экологически чистые, жидкие, высокоэффективные органические удобрения. Эти удобрения содержат минерализованный азот в виде солей аммония (наиболее легко усвояемая форма азота), минерализованные фосфор, калий и другие, необходимые для растения биогенные макро- и микроэлементы, биологически активные вещества, витамины, аминокислоты, гуминоподобные соединения, структурирующие почву.

Получаемый биогаз плотностью 1,2 кг/ м3 (0,93 плотности воздуха) имеет следующий состав (%): метан - 65, углекислый газ - 34, сопутствующие газы - до 1 (в том числе сероводород - до 0,1). Содержание метана может меняться в зависимости от состава субстрата и технологии в пределах 55-75 %. Содержание воды в биогазе при 40°С - 50 г/м3; при охлаждении биогаза она конденсируется, и необходимо принять меры к удалению конденсата (осушка газа, прокладка труб с нужным уклоном и пр.).
Энергоемкость получаемого газа - 23 мДж/ м3 , или 5500 ккал/ м3 .
Энергия, запасенная в первичной и вторичной биомассе может конвертироваться в технически удобные виды топлива или энергии несколькими путями.

Получение растительных углеводородов (растительные масла, высокомолекулярные жирные кислоты и их эфиры, предельные и непредельные углеводороды и т.д.).

Термохимическая конверсия биомассы (твердой, до 60%) в топливо: прямое сжигание, пиролиз, газификация, сжижение, фест-пиролиз.
Биотехнологическая конверсия биомассы (при влажности от 75 % и выше) в топливо: низкоатомные спирты, жирные кислоты, биогаз.

Биологическая конверсия биомассы в топливо и энергию развивается по двум основным направлениям:

  • ферментация с получением этанола, низших жирных кислот, углеводородов, липидов - это направление давно и успешно используется на практике;
  • получение биогаза.

В настоящее время получение биогаза связано, прежде всего с переработкой и утилизацией отходов животноводства, птицеводства, растениеводства, пищевой, спиртовой промышленности, коммунально-бытовых стоков и осадков.

 

Экологическая характеристика использования биоэнергетических установок.

Биоэнергетические станции по сравнению с традиционными электростанциями и другими НВИЭ являются наиболее экологически безопасными. Они способствуют избавлению окружающей среды от загрязнения всевозможными отходами. Так, например, анаэробная ферментация – эффективное средство не только реализации отходов животноводства, но и обеспечения экологической чистоты, так как твердые органические вещества теряют запах и становятся менее привлекательными для грызунов и насекомых (в процессе перегнивания разрушаются болезнетворные микроорганизмы). Кроме того, образуются дополнительный корм для скота (протеин) и удобрения.

Городские стоки и твердые отходы, отходы при рубках леса и деревообрабатывающей промышленности, представляя собой возможные источники сильного загрязнения природной среды, являются в то же время сырьем для получения энергии, удобрений, ценных химических веществ. Поэтому широкое развитие биоэнергетики эффективно в экологическом отношении. Однако неблагоприятные воздействия на объекты природной среды при энергетическом использовании биомассы имеют место. Прямое сжигание древесины дает большое количество твердых частиц, органических компонентов, окиси углерода и других газов. По концентрации некоторых загрязнителей они превосходят продукты сгорания нефти и ее производных. Другим экологическим последствием сжигания древесины являются значительные тепловые потери.

По сравнению с древесиной биогаз – более чистое топливо, непроизводящее вредных газов и частиц. Вместе с тем необходимы меры предосторожности при производстве и потреблении биогаза, так как метан взрывоопасен. Поэтому при его хранении, транспортировке и использовании следует осуществлять регулярный контроль для обнаружения и ликвидации утечек.

При ферментационных процессах по переработке биомассы в этанол образуется большое количество побочных продуктов (промывочные воды и остатки перегонки), являющихся серьезным источником загрязнения среды, поскольку их вес в несколько раз (до 10) превышает вес этилового спирта.

Неблагоприятные воздействия биоэнергетики на экологию:

  • выбросы твердых частиц, канцерогенных и токсичных веществ, окиси углерода, биогаза, биоспирта;
  • выброс тепла, изменение теплового баланса;
  • обеднение почвенной органики, истощение и эрозия почв;
  • взрывоопасность;
  • большое количество отходов в виде побочных продуктов (промывочные воды, остатки перегонки

 

@reg

@support17

Сейчас 95 гостей онлайн

@(c)

Copyright © 2009-2011 Support17.com
Любое использование материалов, опубликованных на support17,
разрешается только в случае указания гиперссылки на Support17.com

@s

Родоначальницей всех приборостроительных специальностей явилась кафедра «Приборы точной механики», которая была открыта в 1961 г. на машиностроительном факультете.
В 1976 г. был организован оптико-механический факультет.